

Supplementary Materials for
Agile and cooperative aerial manipulation of a cable-suspended load

Sihao Sun et al.

Corresponding author: Sihao Sun, sihao.sun@outlook.com

Sci. Robot. 10, eadu8015 (2025)
DOI: 10.1126/scirobotics.adu8015

The PDF file includes:

Methods
Discussion
Figs. S1 to S5
Algorithm S1
Table S1
Legends for movies S1 to S5
References (43–46)

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S5

Supplementary Methods

Proof of Smoothness of Quadrotor Trajectories

Proposition 1: When the 𝑖-th cable remains taut, the trajectory of 𝑖-th quadrotor, denoted as 𝒑𝑖 (𝑡),
is 𝐶3 smooth if 𝝀𝑖 and 𝜸𝑖 defined in Equation 3 are bounded.
Proof: For the 𝑖-th quadrotor, the kinematic constraint (Equation 5) holds when the corresponding
cable is taut. Then we take the 3rd-order derivative of Equation 5 to obtain the jerk of the quadrotor

¥𝒗𝑖 = ¥𝒗 + 𝑹(𝒒)
{
𝝎 ×

[
¤𝝎 × 𝝆𝑖 + 𝝎 × (𝝎 × 𝝆𝑖)

]
+ ¥𝝎 × 𝝆𝑖 + ¤𝝎 × (𝝎 × 𝝆𝑖) + 𝝎 × (¤𝝎 × 𝝆𝑖)

}
− 𝑙𝑖

{
¥𝒓𝑖 × 𝒔𝑖 + 2¤𝒓𝑖 × (𝒓𝑖 × 𝒔𝑖) + 𝒓𝑖 × (¤𝒓𝑖 × 𝒔𝑖)

+ 𝒓𝑖 ×
[
𝒓𝑖 × (𝒓𝑖 × 𝒔𝑖)

]}
,

(S1)

where ¤𝝎 is given in the load dynamics (Equation 2); ¥𝒗 and ¥𝝎 are obtained by taking the derivative
of both sides of Equation 2:

¥𝒗 = − 1
𝑚

𝑛∑︁
𝑖=1

[
¤𝑡𝑖𝒔𝑖 + 𝑡𝑖 (𝒓𝑖 × 𝒔𝑖)

]
, (S2)

¥𝝎 = 𝑱−1
{
− ¤𝝎 × 𝑱𝝎 − 𝝎 × 𝑱 ¤𝝎 +

𝑛∑︁
𝑖=1

[
¤𝑡𝑖𝑹⊤𝒔𝑖 + 𝑡𝑖

(
−𝝎 × 𝑹⊤𝒔𝑖 + 𝑹⊤(𝒓𝑖 × 𝒔𝑖)

)]
× 𝝆𝑖

}
, (S3)

Judging from the load-cable dynamics (Equation 2 and 3), the continuousness of ¥𝒗𝑖 is determined
by the highest-order states ¤𝑡𝑖 and ¥𝒓𝑖. Therefore, ¥𝒗𝑖 is continuous; namely 𝒑𝑖 is 𝐶3-smooth, when
¥𝑡𝑖 = 𝛾𝑖 and 𝒓̈𝑖 = 𝝀𝑖 are bounded. □

The OCP of the planner takes 𝛾𝑖 and 𝝀𝑖 as inputs, which can be bounded by setting input
constraints. Hence, the generated trajectories of all quadrotors are smooth up jerk as long as the
cable tautness is guaranteed. One step further, once the reference jerk is continuous, we can also
obtain a smooth angular velocity reference.
Proposition 2: The angular velocity of the 𝑖-th quadrotor expressed in the inertial frame, denoted
by 𝝎I

𝑖
∈ R3 is 𝐶0-smooth if 𝝀𝑖 and 𝛾𝑖 defined in Equation 3 are bounded, and aerodynamic drag

𝒇 𝑎,𝑖 is at least 𝐶1-smooth.
Proof: To obtain the angular velocity reference of each quadrotor, we need to revisit the translational
dynamic equation of the 𝑖-th quadrotor

¤𝒗𝑖 =
(
𝑇𝑖𝒛𝑖 + 𝑡𝑖𝒔𝑖 + 𝒇 𝑎,𝑖

)
/𝑚𝑖 + 𝒈 (S4)

Taking the derivative of both sides of Equation S4, we have

𝒉𝑖 ≜ 𝝎I
𝑖 × 𝒛𝑖

=

[
𝑚𝑖 ¥𝒗𝑖 − ¤𝑇𝑖𝒛𝑖 − ¤𝑡𝑖𝒔𝑖 − 𝑡𝑖 (𝒓𝑖 × 𝒔𝑖) − ¤𝒇 𝑎,𝑖

]
/𝑇𝑖

(S5)

Since the yaw rate references are zero for all quadrotors, 𝝎I
𝑖

is perpendicular to 𝒛𝑖. Then we can
obtain the expression of 𝝎I

𝑖
by

𝝎I
𝑖 = 𝒛𝑖 × 𝒉𝑖 =

1
𝑇𝑖
𝒛𝑖 ×

[
¥𝒗𝑖 − ¤𝑡𝑖𝒔𝑖 − 𝑡𝑖 (𝒓𝑖 × 𝒔𝑖) − ¤𝒇 𝑎,𝑖

]
(S6)

According to Proposition 1 and Equation 9, ¥𝒗𝑖 is 𝐶0-smooth and 𝑇𝑖 is at least 𝐶1 smooth. When
𝛾𝑖 is bounded, ¤𝑡𝑖 is also 𝐶0-smooth. Hence angular velocity 𝝎I

𝑖
is also 𝐶0-smooth when 𝒇 𝑎,𝑖 is at

least 𝐶1-smooth. □

If we use Equation S6 to generate the angular velocity reference of each quadrotor, its smoothness
is guaranteed through Proposition 2, if we use a smooth drag model (In this work, we assume zero
drag for simplicity). The smooth angular velocity reference, used as feed-forward terms by the
trajectory tracking controller onboard the quadrotor, guarantees smooth quadrotor behavior, which
is particularly crucial during dynamic motions.

Incremental Nonlinear Dynamic Inversion (INDI) Low-Level Controller

The INDI low-level controller of each quadrotor generates rotor speed commands, using the col-
lective thrust command 𝑇des and angular acceleration command 𝜶des. Here, we summarize the key
equations of the INDI controller introduced in our previous work (29). In the following context, we
denote rotor speed commands as 𝒖𝑐 ∈ R4, and rotor speed measurement as 𝒖𝑚 ∈ R4. Note that the
following equations apply to a single quadrotor. Hence we omit the subscript 𝑖 for readability.

The INDI low-level controller employs the following model that maps the rotor speeds to the
collective thrust 𝑇 ∈ R≥0 and body torque 𝝉 ∈ R3[

𝑇

𝝉

]
= 𝑮1𝒖

◦2
𝑚 + 𝑮2 ¤𝒖𝑚 (S7)

where 𝑮1 and 𝑮2 are the control effectiveness matrices with respect to the rotor speeds. Specifically,
𝑮1 depends on the shape and size of the quadrotor and aerodynamic coefficients of the propellers.
𝑮2 captures the inertial yawing torque due to the acceleration and deceleration of the rotors, which
is a function of the moment of inertia of the rotors.

Therefore, once the desired collective thrust and torque [𝑇des, 𝝉des]⊤ is computed, INDI nu-
merically solves the following equation to obtain rotor speed command 𝒖𝑐[

𝑇des

𝝉des

]
= 𝑮1𝒖

◦2
𝑐 + Δ𝑡−1𝑮2

(
𝒖𝑐 − 𝒖𝑐,𝑘−1

)
(S8)

where Δ𝑡 is the sampling interval of the controller; 𝒖𝑐,𝑘−1 is the last computed rotor speed command
𝒖𝑐. And 𝒖𝑐,0 = 𝒖𝑚 for initialization.

Unlike conventional dynamic inversion, the INDI low-level controller defines the desired body
torque in the following incremental form

𝝉des = 𝝉 𝑓 + 𝑱
(
𝜶des − ¤𝝎 𝑓

)
(S9)

where ¤𝝎 𝑓 is the angular acceleration obtained by numerically differentiating the filtered gyroscope
measurement from the quadrotor. 𝝉 𝑓 is the filtered body torque, which can be calculated using rotor
speed measurements leveraging Equation S7, yielding

𝝉 𝑓 =

[
𝑮1𝒖

◦2
𝑓 + Δ𝑡−1𝑮2

(
𝒖 𝑓 − 𝒖 𝑓 ,𝑘−1

)]
2:4

(S10)

where 𝒖 𝑓 is the low-pass filtered rotor speed measurements. Note that the cutoff frequency of the
filter for 𝒖 𝑓 and 𝝎 𝑓 is the same to synchronize the delay introduced by the low-pass filter on these
two measurements. The INDI low-level controller leverages the sensor measurements to effectively
capture and compensate for the external torques that are not captured in Equation S7, such as
aerodynamic torque, CoG bias of quadrotors, etc.

Supplementary Discussions

Load Pose Estimation Performance

In the above experiments (all real-world experiments shown in this paper), we need information
on load pose and twist to achieve dynamic and accurate trajectory tracking. In the state-of-the-
art method that includes real-world experiments, additional sensors are required for the load pose
estimation. The most commonly used approach is attaching reflective markers on the load to measure
its pose from the motion capture system (12, 16, 21), or resorting to additional downward-facing
cameras and attaching additional circular tags on the load (11). However, it is impractical to attach
these sensors in the field for day-to-day operations.

In comparison, our algorithm does not need to put any additional sensors on the load, nor does
it make any modifications to the quadrotors. In the experiments, we demonstrated that by simply
leveraging the IMU on each quadrotor and the dynamic model of the multi-lifting system can
provide a sufficiently accurate load pose and twist estimate as well as the cable states to achieve
agile pose control. Fig. S1 presents the comparison between the ground truth pose of the load and
the estimated pose while tracking reference Fast. Despite the large acceleration of the motion, over
45 degrees of inclination, and continuous yawing motion, our method provided sufficiently high
estimation accuracy to achieve closed-loop trajectory tracking. The position estimation RMSE was
0.136 m and the attitude estimation RMSE was 7.5 deg even with the highly dynamic motion of
the system.

Trajectory tracking

Waypoint tracking

0 5 10 15 20 25 30 35 40
Time [s]

-50

0

50

ro
ll

[d
e
g

]

0 5 10 15 20 25 30 35 40
Time [s]

-50

0

50

p
it

ch
 [

d
e
g

]
0 5 10 15 20 25 30 35 40

Time [s]

0

200

400

y
a
w

 [
d

e
g

] Reference
Ground truth
Estimate

0 5 10 15
Time [s]

-20

0

20

40

ro
ll

[d
e
g

]

0 5 10 15
Time [s]

-30

-20

-10

0

p
it

ch
 [

d
e
g

]

0 5 10 15
Time [s]

-100

-50

0

y
a
w

 [
d

e
g

] Reference
Ground truth
Estimate

0 5 10 15 20 25 30 35 40
Time [s]

-2

0

2

X
 [

m
]

0 5 10 15 20 25 30 35 40
Time [s]

-2

0

2

Y
 [

m
]

0 5 10 15 20 25 30 35 40
Time [s]

1

1.1

1.2

Z
 [

m
]

0 5 10 15
Time [s]

0

0.05

0.1

X
 [

m
]

0 5 10 15
Time [s]

-1

0

1

Y
 [

m
]

0 5 10 15
Time [s]

0.98

1

1.02

Z
 [

m
]

Figure S1: Load pose estimation and tracking result. Without adding additional sensors to the
load or force sensors to quadrotors, our algorithm could accurately estimate the load’s pose for an
accurate closed-loop control. Top: time history of the position and attitude (Euler angles) estimate
in comparison with the ground truth from the motion capture system, as well as the reference load
pose while tracking the figure-eight trajectory Fast; Bottom: time history of the estimated, the
ground truth, and the reference load pose while tracking a setpoint.

Sensitivity to Quadrotor Coordinate Frame Misalignment

We conducted Monte Carlo simulations to examine the effect of misalignment among ground-fixed
reference frames (e.g, odometry frames) used by different quadrotors. This issue arises when no
global positioning sensors (e.g., motion capture or GPS) are available, such as when using Visual
Inertial Odometry (VIO) for state estimation in GPS-denied environments. In this simulation, we
assumed that the initial odometry frames of all quadrotors were well-calibrated and aligned with the
inertial frame. We then introduced the transformation between the odometry frame and the inertial
frame for each quadrotor, in the form of a random-walk process. In this way, we simultaneously
simulated the misalignment of reference frames among quadrotors and the pose drift typically
observed in visual (-inertial) odometry algorithms.

It is worth noting that extensive research has been conducted on aligning estimated reference
frames among multiple robots in the context of multi-robot VIO (e.g., (43–46)). A standard approach
is to align these coordinate frames in real-time through place recognition to match landmarks seen
by different cameras (quadrotors in our case) and by estimating the relative poses between coordinate
frames (45). The accuracy of relative pose estimation depends on the quality frontend / backend in
the VIO algorithms and the quality of the established map. A typical example alignment frequency
is 1 Hz (46).

Since we were unable to simulate all possible approaches in our study, we only performed a
worst-case and best-case scenario analysis. In the worst case, we ran simulations without any real-
time alignment. In the best case, we ran simulations and precisely aligned the quadrotors’ odometry
frames with the inertial frame at 1 Hz. In both cases, we let the system follow the reference trajectory
Fast.

Figure S2: Simulation result under misalignment between quadrotor reference frames. The
misalignment was induced by random-walk noise at different levels, on the transform between
quadrotor VIO frames and the inertial frame. (A) The worst case: there was no frame alignment
mechanism among quadrotors. (B) The best case: the frames were precisely aligned at 1 Hz.

Fig. S2 presents the results of the two cases. It shows that, in the worst case, without any
alignment between quadrotors, our method still maintains a success rate of 90% at the 2nd noise
level, where the standard deviation of coordinate frame drift is 0.03 m on position and 3 deg on
attitude after 50 seconds. We noticed that the attitude misalignment between the coordinate frames
is the main cause of failure, as it introduced large position state estimation errors of quadrotors
when they follow a trajectory that is far from the origin of the frames. On the other hand, we
demonstrated that with an ideal alignment running at 1 Hz, the performance is almost unaffected
by the drift of coordinate frames until it reaches noise level 4. These results have demonstrated
the strong potential of our method to combine with multi-robot VIO algorithms and deploy in a
GPS-denied environment.

Load
Size: 54cm x 45cm x 15cm
Mass: 1.4 kg

Cable
Length: 1mAttachment point 3

(-0.28, 0.0, 0.06)m
w.r.t load center

Attachment point 2
(0.26, -0.22, 0.06)m
w.r.t load center

Attachment point 1
(0.26, 0.22, 0.06)m
w.r.t load center

Quadrotor
Mass: 0.6kg
Max thrust: 20N

Mocap reflective markers
Not for control purposes
but for the ground truth of load pose

Figure S3: Experimental setup. A snapshot of our experiment, together with the parameters of
the load, the quadrotors, and the cables.

Figure S4: Definition of reference frames and symbols. F𝐼 , F𝐿 , F𝑖 respectively denote the inertial
frame, load-fixed frame, and the 𝑖-th quadrotor-fixed frame, where the 𝑥, 𝑦, 𝑧 are marked in red,
green, blue colors respectively.

Figure S5: Step response under load model uncertainties and communication delay. Simulation
result comparing the tracking performance between our method and the two baseline methods
(NMPC (12) and Geometric (14)) under various types of model mismatch on the load, as well as
communication delay between the centralized planner and quadrotors. We sent a load reference point
at 2 m away along y-axis, and an attitude command of -90 deg, -20 deg, and 30 deg, respectively,
on yaw, pitch, and roll. Our method clearly outperforms the two baseline methods in the presence
of load model mismatch and communication delays.

Algorithm S1 Iterative Kabsch–Umeyama algorithm to initialize states of the EKF

Input: 𝑛, 𝒑𝑖, 𝝆𝑖, 𝑙𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛}
Define tolerance and maximum steps for iteration: 𝑡𝑜𝑙pos, 𝑡𝑜𝑙att, 𝑖𝑡𝑒𝑟max

Define average cable connection points 𝝆̄ =
∑𝑛

𝑖=1 𝝆𝑖/𝑛, 𝑳 = [𝝆1 − 𝝆̄, 𝝆2 − 𝝆̄, ..., 𝝆𝑛 − 𝝆̄]
Define initial load pose 𝒑 = [0, 0, 0]⊤ , 𝑹 = 𝑰3

Initialize the last load pose 𝒑last = ∞, 𝑹last = 𝑶3

Initial guess of cable directions 𝒔𝑖 = [0, 0, −1]⊤ for 𝑖 ∈ {1, 2, . . . , 𝑛}
for 𝑘 = 1, . . . , 𝑖𝑡𝑒𝑟max do

for 𝑖 = 1, . . . , 𝑛 do
𝒄𝑖 = 𝒑𝑖 + 𝒔𝑖𝑙𝑖

𝒄̄ =
∑𝑛

𝑖=1 𝒄𝑖/𝑛
𝑪 = [𝒄1 − 𝒄̄, 𝒄2 − 𝒄̄, . . . , 𝒄𝑛 − 𝒄̄]
[𝑼,𝑽] = SVD(𝑳𝑪⊤)

𝑹 = 𝑽


1 0 0
0 1 0
0 0 sign

(
det(𝑽𝑼⊤)

)
 𝑼

⊤ ⊲ Estimated load attitude

for 𝑖 = 1, 2, . . . , 𝑛 do
𝒑̃𝑖 = 𝒄𝑖 − 𝑹𝝆𝑖

𝒑 =
∑𝑛

𝑖=1 𝒑̃𝑖/𝑛 ⊲ Estimated load position
for 𝑖 = 1, 2, . . . , 𝑛 do

𝒔𝑖 = (𝑹𝝆𝑖 + 𝒑 − 𝒑𝑖)/∥ 𝑹𝝆𝑖 + 𝒑 − 𝒑𝑖 ∥ ⊲ Estimated cable direction
if ∥ 𝒑 − 𝒑last∥ < 𝑡𝑜𝑙pos and ∥ det(𝑹−1𝑹last) − 1∥ < 𝑡𝑜𝑙att then

Break
𝒑last = 𝒑, 𝑹last = 𝑹

Return 𝒑, 𝒒(𝑹), 𝒔1, 𝒔2, . . . , 𝒔𝑛

Table S1: Algebraic expression of load reference trajectories
Name 𝒑𝑥 𝒑𝑦 𝒑𝑧

Slow 2.5 cos (0.25𝑡) 2 sin (0.5𝑡) 1.0
Medium 2.5 cos (0.5𝑡) 2 sin (𝑡) 1.0
Medium Plus cos (𝑡) sin (2𝑡) 1.0
Fast 2.5 cos (𝑡) 2 sin (2𝑡) 1.0

Caption for Movie S1. Video comparing our method with baseline methods in simulation.
The video shows the 6-DoF simulation result of our method and the two baseline methods in
tracking the two reference trajectories (Fast and Slow). The video is associated with the result given
in Table 1.

Caption for Movie S2. Video of flight for obstacle avoidance. The video shows real-world
experiments performing two obstacle avoidance tasks: one through a narrow passage between two
walls, and the other through a horizontally oriented gap.

Caption for Movie S3. Video of flight with four quadrotors. The video shows the real-world
experiment of our method scaling up to a case with four quadrotors following a reference trajectory
dynamically.

Caption for Movie S4. Video of flight in windy conditions. The video shows that our method
effectively controls the system to follow trajectories under moderate wind disturbances.

Caption for Movie S5. Video showing results with large quadrotor state estimation errors.
The video shows real-world experiment and simulation results under different levels of quadrotor
state estimation errors.

